Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans.
نویسندگان
چکیده
A comparison was made of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Although all three organisms reduced nitrate to dinitrogen gas, they did so at different rates and accumulated different kinds and amounts of intermediates. Their rates of anaerobic growth on nitrate varied about 1.5-fold; concomitant gas production varied more than 8-fold. Cell yields from nitrate varied threefold. Rates of gas production by resting cells incubated with nitrate, nitrite, or nitrous oxide varied 2-, 6-, and 15-fold, respectively, among the three species. The composition of the gas produced also varied markedly: Pseudomonas stutzeri produced only dinitrogen; Pseudomonas aeruginosa and Paracoccus denitrificans produced nitrous oxide as well; and under certain conditions Pseudomonas aeruginosa produced even more nitrous oxide than dinitrogen. Pseudomonas stutzeri and Paracoccus denitrificans rapidly reduced nitrate, nitrite, and nitrous oxide and were able to grow anaerobically when any of these nitrogen oxides were present in the medium. Pseudomonas aeruginosa reduced these oxides slowly and was unable to grow anaerobically at the expense of nitrous oxide. Furthermore, nitric and nitrous oxide reduction by Pseudomonas aeruginosa were exceptionally sensitive to inhibition by nitrite. Thus, although it has been well studied physiologically and genetically, Pseudomonas aeruginosa may not be the best species for studying the later steps of the denitrification pathway.
منابع مشابه
Growth yields in bacterial denitrification and nitrate ammonification.
Denitrification and nitrate ammonification are considered the highest-energy-yielding respiration systems in anoxic environments after oxygen has been consumed. The corresponding free energy changes are 7 and 35% lower than that of aerobic respiration, respectively. Growth yield determinations with pure cultures of Paracoccus denitrificans and Pseudomonas stutzeri revealed that far less energy ...
متن کاملCell biology and molecular basis of denitrification.
Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolis...
متن کاملSteady-state nitric oxide concentrations during denitrification.
Three species of denitrifying bacteria, Paracoccus denitrificans, Pseudomonas stutzeri strain JM300, and Achromobacter cycloclastes, were allowed to reduce nitrate or nitrite in anaerobic, closed vials while the equilibration of gases between aqueous and gas phases was facilitated by vigorous stirring. The gas phase was sampled and analyzed for NO with use of a chemiluminescence detector calibr...
متن کاملThe cellular location and specificity of bacterial cytochrome c peroxidases.
The locations of cytochrome c peroxidase and catalase activities in the two Gram-negative bacteria Pseudomonas stutzeri (N.C.I.B. 9721) and Paracoccus denitrificans (N.C.I.B. 8944) were investigated by the production of spheroplasts. In both species the cytochrome c peroxidase was predominantly periplasmic: 92% of total activity in Ps. stutzeri and 98% of nonmembrane-bound activity in Pa. denit...
متن کاملInability of Pseudomonas stutzeri Denitrification Mutants with the Phenotype of Pseudomonas aeruginosa to Grow in Nitrous Oxide.
[This corrects the article on p. 1301 in vol. 50.].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 45 4 شماره
صفحات -
تاریخ انتشار 1983